Quick Start
To use the Bilby Quant API, you will first need to sign up for an account, and that needs to be approved. After that, you can start using the API by making requests.
Create an API key here.
Example cURL Request
Make sure to replace <YOUR_API_KEY_HERE>
with your actual API key.
curl -X 'POST' \
'https://api.quant.bilby.ai/v1/documents' \
-H 'accept: application/json' \
-H 'x-api-key: <YOUR_API_KEY_HERE>' \
-H 'Content-Type: application/json' \
-d '{
"dataset": "basic_documents",
"start_date": "2024-09-27",
"end_date": "2024-09-27",
"offset": 0,
"limit": 20000
}'
The API takes the following parameters:
dataset
: The dataset from which you want to get data. Valid values arebasic_documents
,commodity_documents
, andgics_documents
.start_date
: The start date of the data range. The format isYYYY-MM-DD
. The date is inclusive.end_date
: The end date of the data range. The format isYYYY-MM-DD
. The date is inclusive.offset
: The offset of the data range. The default value is 0.limit
: The limit of the data range. The default value is 20000.
Note regarding offset and limit:
Offset means starting from the value of offset, and limit means the number of results to return. For example, if you set offset to 10 and limit to 10, you will get the 11th to 20th result.
Example Python Request
import requests
API_KEY = "<YOUR_API_KEY_HERE>"
response = requests.post(
"https://api.quant.bilby.ai/v1/documents",
headers={
"accept": "application/json",
"x-api-key": API_KEY,
},
json={
"dataset": "basic_documents",
"start_date": "2024-09-27",
"end_date": "2024-09-27",
"offset": 0,
"limit": 10
}
)
res = response.json()
# If you then want to use DataFrames, you can do the following:
import pandas as pd
df = pd.DataFrame(res["data"])
API Response Format
took
is the milliseconds it took to process the request. stats
includes two
values,
hits
: the number of results returned indata
.total
: the total number of results in the date range. You can use this value to loop through the results.
data
is an array of objects, each representing a document.
{
"took": 145,
"stats": { "hits": 2875, "total": 2875 },
"data": [
{
"id": "b8e2baae6aea223d7ee4c1adbdd668c812181584ec8bdc8632cfce010168f771",
"published_at": "2024-09-26T00:00:00.000Z",
"utc_date": "2024-09-25T16:00:00.000Z",
"source": "State-Owned Assets Supervision and Administration Commission",
"source_line": "ministry",
"source_country": "China",
"source_language": "Chinese",
"copies": 1,
"copies_proportion": "0.0000",
"sentiment_prediction": "positive",
"positive_sentiment_probability": 0.634282291,
"neutral_sentiment_probability": 0.357519478,
"negative_sentiment_probability": 0.0000177088968,
"sentiment_extremity": 0.40750263979577583,
"sector_prediction": ["Utilities", "Energy"],
"sector_probability_energy": 0.9854510380896018,
"sector_probability_materials": 0.03835193681535576,
"sector_probability_industrials": 0.7671805324238856,
"sector_probability_consumer_discretionary": 0.10070077988032433,
"sector_probability_consumer_staples": 0.016629152218752608,
"sector_probability_health_care": 0.027707230409647843,
"sector_probability_financials": 0.02547944232821009,
"sector_probability_information_technology": 0.04352068946846133,
"sector_probability_communication_services": 0.24500555014446856,
"sector_probability_utilities": 0.9965082201653087,
"sector_probability_real_estate": 0.09602526389032962,
"sector_probability_macro": 0.5694763437047621,
"sector_probability_not_relevant": 0.18607557101079852,
"policy_stage_prediction": 0,
"policy_stage_probability_0": 0.9965717792510986,
"policy_stage_probability_1": 0.0020946061704307795,
"policy_stage_probability_2": 0.0012986804358661175,
"policy_stage_probability_3": 0.00003488860238576308,
"importance_prediction": 1,
"importance_probability_1": 0.874384344,
"importance_probability_2": 0.0382087827,
"importance_probability_3": 0.0845356882,
"importance_probability_4": 0.0109673142,
"importance_probability_5": 0.00554746389,
"policy_impact_score": 0.2025008799319253,
"policy_impact_percentage": 20.25008799319253
},
...
]
}